Bayesian Correlation Estimation
نویسندگان
چکیده
We propose prior probability models for variance-covariance matrices in order to address two important issues. First, the models allow a researcher to represent substantive prior information about the strength of correlations among a set of variables. Secondly, even in the absence of such information, the increased flexibility of the models mitigates dependence on strict parametric assumptions in standard prior models. For example, the model allows a posteriori different levels of uncertainty about correlations among different subsets of variables. We achieve this by including a clustering mechanism in the prior probability model. Clustering is with respect to variables and pairs of variables. Our approach leads to shrinkage towards a mixture structure implied by the clustering. We discuss appropriate posterior simulation schemes to implement posterior inference in the proposed models, including the evaluation of normalising constants that are functions of parameters of interest. The normalising constants result from the restriction that the correlation matrix be positive definite. We discuss examples based on simulated data, a stock return dataset and a population genetics dataset.
منابع مشابه
Bayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملEstimation of Genetic Parameters for Production and Reproduction Traits of Holstein Cows of Mazandaran Province using Bayesian Approach
The present study was conducted to estimate the genetic and phenotypic parameters of productive and reproductive traits of Holstein cows in Mazandaran Holstein dairy cattle. To this purpose, data 39792 records of Holstein cows collected at Mahdasht Milk and Meat Company in sari during 1986 to 2015 were used. Productive traits included corrected 305 days milk records, fat and protein produ...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملInference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملBayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss
This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.
متن کامل